New Compounds 1065

SYNTHESIS OF HETEROCYCLIC KETENE N,S-ACETALS AND THEIR REACTIONS WITH α , β -UNSATURATED NITRILES

Ahmed K. EL-SHAFEI, Ahmed M. M. EL-SAGHIER and Ahmed M. SOLIMAN

Chemistry Department, Faculty of Sciences, Sohag, Egypt

> Received August 15, 1994 Accepted March 19, 1995

In an extention of our recent studies^{1–4} on the application of ketoketene or cyanoketene S,S-acetals in heterocyclic synthesis we report here a simple procedure for the synthesis of 1-amino-4-acetyl- 2-cyano-3-phenyl-3H-pyrido[2,1-b][1,3]benzothiazole (Va) or benzoxazole derivative Vb from 2-(1-acetyl-2-oxopropylidene)benzothiazole⁵ IIIa or benzoxazole derivative⁴ IIIb and benzylidenemalononitrile (cf. Scheme 1).

The reaction mechanism was assumed to follow a preliminary hydrolysis of one of the acetyl groups followed by a nucleophilic addition of the ethylenic –CH hydrogen atom at the ethylenic double bond of the benzylidenemalononitrile with subsequent cyclization. This proposed mechanism was confirmed by a separate two-step reaction where compound *IIIa* and *IIIb* were hydrolyzed by boiling either in ethanol in presence of piperidine or in methanol in presence of sodium methoxide into the intermediate product 2-(2-oxopropylidene)benzothiazole (*IVa*) or benzoxazole derivative⁴ *IVb* which was reacted with benzylidenemalononitrile in boiling ethanol in the presence of a catalytic amount of piperidine to afford compounds *Va* and *Vb*.

Compound IIIa was also allowed to react with a variety of α,β -unsaturated nitriles including arylidenemalononitrile, arylidene ethylcyanoacetate, arylidenecyanoacetamide and arylidenephenylacetonitrile in refluxing ethanol containing piperidine base where in each case a preliminary hydrolysis of one of the two acetyl groups was affected followed by a nucleophilic addition of the formed carbanion at the arylidene double bond and cyclization into the desired 3H-pyrido-[2,1-b][1,3]benzothiazole derivatives VIa-VIi, cf. Scheme 1.

EXPERIMENTAL

Melting points are uncorrected. IR spectra were obtained (KBr disc) on a Nicolet 710 FT-IR spectrometer, wavenumbers are given in cm⁻¹. 1 H NMR spectra were measured on a Varian EM 360A instrument (60 MHz) in CD₃SOCD₃ or CDCl₃ with tetramethylsilane as internal standard. Chemical shifts are given in ppm (δ -scale), coupling constants (J) in Hz.

Collect. Czech. Chem. Commun. (Vol. 60) (1995)

IVa, IVb
$$C_6H_5CH=C(CN)_2$$
 C_6H_5 $COCH_3$ C_6H_5 $COCH_3$

In formulae III - V:

$$a$$
, $X = S$; b , $X = O$

In formula VI:

	R ¹	R ²			R ¹	R ²
	COOC ₂ H ₅	Н	_	f	CN	NO ₂
b	CONH ₂	Н		g	COOC ₂ H ₅	NO ₂
c	CN	OCH ₃		h	CONH ₂	NO ₂
d	COOC ₂ H ₅	OCH ₃		i	C ₆ H ₅	NO ₂
e	CONH ₂	OCH₃		•		

New Compounds 1067

2-(1-Acetyl-2-oxopropylidene)benzothiazole (IIIa)

A solution of 2-[di(methylthio)methylene]pentan-2,4-dione⁴ (817 mg, 4.0 mmol) and 2-aminothiophenol (513 mg, 4.1 mmol) in absolute ethanol (25 ml) was refluxed for 24 h. After cooling the precipitate was filtered off and recrystallized from ethanol. Yield 886 mg (95%) of *IIIa*, m.p. 155 °C. IR spectrum: 3 430 (NH); 1 660 (C=O); 1 540 (C=C). ¹H NMR spectrum (CDCl₃): 10.70 br, 1 H (NH); 7.90–7.40 m, 4 H (H-arom.); 2.30 s, 3 H (CH₃); 2.15 s, 3 H (CH₃). For C₁₂H₁₁NO₂S (233.3) calculated: 61.78% C, 4.75% H, 6.00% N, 13.74% S; found: 61.64% C, 4.68% H, 6.13% N, 13.71% S.

2-(2-Oxopropylidene)benzothiazole (IVa)

- A) Compound IIIa (2.33 g, 10 mmol) was added to the solution of sodium (1 g) in methanol (30 ml) and the mixture was refluxed for 4 h. Water (20 ml) was then added and the mixture was extracted with chloroform (3 \times 50 ml). The collected extracts were dried over anhydrous sodium sulfate, the solvent was evaporated and the solid precipitate was recrystallized from ethanol. Yield 2.12 g (91%), m.p. 110 °C. IR spectrum: 3 450 (NH); 1 650 (C=O). 1 H NMR spectrum (CDCl₃): 11.70 br, 1 H (NH); 8.70–8.20 m, 4 H (H-arom.); 5.40 s, 1 H (=CH-); 3.10 s, 3 H (COCH₃). For C₁₀H₉NOS (191.3) calculated: 62.80% C, 4.70% H, 7.32% N, 16.77% S; found: 62.64% C, 4.81% H, 7.55% N, 16.87% S.
- B) A mixture of compound IIIa (2.33 g, 10 mmol) and piperidine (1 ml) in ethanol (30 ml) refluxed for 1 h, the reaction mixture was then concentrated to its half volume. After cooling, the precipitate solid was filtered off and recrystallized from ethanol. Yield 1.98 g (85%) of compound IVa identical with sample prepared by procedure A.

2-(2-Oxopropylidene)benzoxazole (*IVb*)

- A) Compound *IVb* was prepared from compound *IIIb* (2.17 g, 10 mmol) according the above mentioned procedure A. Yield 2.07 g (89%) of *IVb*, m.p. 70 °C, literature⁴ gives m.p. 70 °C.
- B) Compound IVb was prepared from compound IIIb (2.17 g, 10 mmol) according the above mentioned procedure B. Yield 1.96 g (84%) of IVb identical with sample prepared by procedure A.

4-Acetyl-1-amino-2-cyano-3-phenyl-3*H*-pyrido[2,1-*b*][1,3]benzothiazole (*Va*)

- A) A mixture of compound IVa (1.91 g, 10 mmol) and benzylidenemalononitrile (1.54 g, 10 mmol) in ethanol (30 ml) was refluxed for 30 min in presence of a catalytic amount of piperidine. On cooling the solid precipitate was filtered off and recrystallized from ethanol into yellow crystals. Yield 3.28 g (95%) of Va, m.p. 269 °C. IR spectrum: 3 400, 3 302 (NH₂); 2 180 (CN); 1 654 (C=O). ¹H NMR spectrum (CD₃SOCD₃): 7.90–7.10 br, 9 H (H-arom.); 6.30–6.10 br, 2 H (NH₂); 4.70 s, 1 H (CH-Ph); 2.00 s, 3 H (CH₃). For $C_{20}H_{15}N_{3}OS$ (345.4) calculated: 69.55% C, 4.38% H, 12.17% N, 9.28% S; found: 69.32% C, 4.63% H, 11.87% N, 9.54% S.
- B) Compound IIIa (2.33 g, 10 mmol) and piperidine (1 ml) are added to a stirred suspension of benzylidenemalononitrile (1.54 g, 10 mmol) in ethanol (30 ml). The reaction mixture was refluxed for 2 h, and then was left to cool. The precipitated solid was filtered off and recrystallized from ethanol into yellow crystals. Yield 3.10 g (90%) of compound Va identical with sample prepared by procedure A.

4-Acetyl-1-amino-2-cyano-3-phenyl-3*H*-pyrido[2,1-*b*][1,3]benzoxazole (*Vb*)

A) A mixture of compound IVb (1.75 g, 10 mmol) and benzylidenemalononitrile (1.54 g, 10 mmol) in ethanol (30 ml) was heated at reflux temperature for 30 min in presence of a catalytic amount of

piperidine. The solid product was filtered off and recrystallized from ethanol into orange crystals. Yield 2.83 g (86%) of compound Vb, m.p. 200 °C. IR spectrum: 3 400, 3 320 (NH₂); 2 184 (CN); 1 677 (C=O). 1 H NMR (CD₃SOCD₃): 7.90 – 7.20 br, 9 H (H-arom.); 4.90 s, 1 H (CH-Ph); 4.70 s, 2 H (NH₂). For C₂₀H₁₅N₃O₂ (329.4) calculated: 72.93% C, 4.59% H, 12.76% N; found: 72.65% C, 4.76% H, 12.89% N.

B) Compound IIIb (2.17 g, 10 mmol) and piperidine (1 ml) are added to a stirred suspension of benzylidenemalononitrile (1.54 g, 10 mmol) in ethanol (30 ml). The reaction mixture was refluxed for 2 h and then was left to cool. The precipitated solid was filtered off and recrystallized from ethanol into orange crystals. Yield 2.63 g (80%) of compound Vb identical with sample prepared by procedure A.

General Procedure for Preparation of 3H-Pyrido[2,1-b][1,3]benzothiazole Derivatives VIa – VIi

Compound IIIa (2.33 g, 10 mmol) and piperidine (1 ml) was added to a stirred suspension of the appropriate α,β -unsaturated nitrile (10 mmol) in ethanol (50 ml). The reaction mixture was refluxed over different periods of time and then allowed to cool, the product was filtered off and recrystallized from methanol (compounds VIc, VIf–VIh) or ethanol (compounds VIa, VIb, VIe, VIi).

4-Acetyl-1-amino-2-ethoxycarbonyl-3-phenyl-3H-pyrido[2,1b][1,3]benzothiazole (VIa). Reaction time 3 h, yield 3.18 g (81%), m.p. 318 °C. IR spectrum: 3 436, 3 351 (NH₂); 1 738 (C=O). 1 H NMR spectrum (CD₃SOCD₃): 7.70–7.20 m, 9 H (H-arom.); 6.30 s, 2 H (NH₂); 4.25 q, 2 H, J=7 (OCH₂); 2.30 s, 3 H (COCH₃); 1.30 t, 3 H, J=7 (CH₃). For C₂₂H₂₀N₂O₃S (392.5) calculated: 67.33% C, 5.14% H, 7.14% N, 8.17% S; found: 67.76% C, 5.09% H, 7.28% N, 8.34% S.

4-Acetyl-1-amino-2-carbamoyl-3-phenyl-3H-pyrido[2,1-b][1,3]benzothiazole (VIb). Reaction time 4 h, yield 2.58 g (71%), m.p. 217 °C. IR spectrum: 3 370, 3 260 (NH₂); 1 632 (C=O). 1 H NMR (CD₃SOCD₃): 7.90–7.30 m, 9 H (H-arom.); 6.40–6.10 br, 2 H (NH₂); 4.80 s, 1 H (CH-Ar); 4.30–4.00 br, 2 H (CONH₂); 2,60 s, 3 H (CH₃). For C₂₀H₁₇N₃O₂S (363.4) calculated: 66.10% C, 4.71% H, 11.56% N, 8.82% S; found: 66.34% C, 4.53% H, 11.34% N, 8.54% S.

4-Acetyl-1-amino-2-cyano-3-(4-methoxyphenyl)-3H-pyrido[2,1-b][1,3]benzothiazole (VIc). Reaction time 2.5 h, yield 3.08 g (82%), m.p. 262 °C. IR spectrum: 3 471, 3 372 (NH₂); 2 182 (CN); 1 647 (C=O). ¹H NMR (CD₃SOCD₃): 8.20–6.80 m, 8 H (H-arom.); 6.30–5.90 br, 2 H (NH₂); 4.60 s, 1 H (CH-Ar); 3.70 s, 3 H (OCH₃); 2.20 s, 3 H (COCH₃). For C₂₁H₁₇N₃O₂S (375.4) calculated: 67.19% C, 4.56% H, 11.19% N, 8.54% S; found: 67.54% C, 4.33% H, 11.56% N, 8.63% S.

4-Acetyl-1-amino-2-ethoxycarbonyl-3-(4-methoxyphenyl)-3H-pyrido[2,1-b][1,3]benzothiazole (VId). Reaction time 3 h, yield 3.17 g (75%), m.p. 230 °C. IR spectrum: 3 408, 3 351 (NH₂); 1 698 (C=O). 1 H NMR (CD₃SOCD₃): 8.00–7.20 m, 8 H (H-arom.); 5.80 s, 2 H (NH₂); 5.20 s, 1 H (CH-Ar); 4.25 q, 2 H, J=7 (OCH₂); 3.30 s, 3 H (OCH₃); 2.20 s, 3 H (COCH₃); 1.35 t, 3 H, J=7 (CH₃). For C₂₃H₂₂N₂O₄S (422.5) calculated: 65.39% C, 5.25% H, 6.63% N, 7.59% S; found: 65.55% C, 5.60% H, 6.33% N, 7.19% S.

4-Acetyl-1-amino-2-carbamoyl-3-(4-methoxyphenyl)-3H-pyrido[2,1-b]-[1,3]benzothiazole (VIe). Reaction time 6 h, yield 2.56 g (65%), m.p. 266 °C. IR spectrum: 3 400, 3 307, 3 290 (NH₂, CONH₂); 1 630 (C=O). 1 H NMR (CDCl₃): 7.90–7.10 m, 8 H (H-arom.); 6.70 s, 2 H (NH₂); 5.20 s, 1 H (CH-Ar); 4.40–3.90 br, 2 H (CONH₂); 3.40 s, 3 H (OCH₃); 2.20 s, 3 H (COCH₃). For C₂₁H₁₉N₃O₃S (393.5) calculated: 64.10% C, 4.86% H, 10.68% N, 8.15% S; found: 64.46% C, 4.44% H, 10.98% N, 8.09% S.

4-Acetyl-1-amino-2-cyano-3-(4-nitrophenyl)-3H-pyrido[2,1-b][1,3]benzothiazole (VIf). Reaction time 3 h, yield 3.24 g (83%), m.p. 257 °C. IR spectrum: 3 470, 3 370 (NH₂); 1 665 (C=O). 1 H NMR (CD₃SOCD₃): 8.80–7.80 m, 8 H (H-arom.); 7.20 s, 2 H (NH₂); 5.60 s, 1 H (CH-Ar); 2.60 s, 3 H (COCH₃). For C₂₀H₁₄N₄O₃S (390.4) calculated: 61.53% C, 3.61% H, 14.35% N, 8.21% S; found: 61.21% C, 3.43% H, 14.86% N, 8.08% S.

New Compounds 1069

4-Acetyl-1-amino-2-ethoxycarboxycarbonyl-3-(4-nitrophenyl)-3H-pyrido[2,1-b][1,3]-benzothiazole (VIg). Reaction time 3 h, yield 3.37 g (77%), m.p. 259 °C. IR spectrum: 3 422, 3 330 (NH₂); 1 724 (C=O). 1 H NMR (CD₃SOCD₃): 8.10–7.70 m, 8 H (H-arom.); 6.80 s, 2 H (NH₂); 5.40 s, 1 H (CH-Ar); 4.00 q, 2 H, J=7 (OCH₂); 2.60 s, 3 H (COCH₃); 1.55 t, 3 H, J=7 (CH₃). For C₂₂H₁₉N₃O₅S (437.5) calculated: 60.40% C, 4.38% H, 9.61% N, 7.33% S; found: 60.89% C, 4.76% H, 9.27% N, 7.64% S.

4-Acetyl-1-amino-2-carbamoyl-3-(4-nitrophenyl)-3H-pyrido[2,1-b][1,3]benzothiazole (VIh). Reaction time 5 h, yield 2.74 g (67%), m.p. 247 °C. IR spectrum: 3 400, 3 300, 3 280 (NH₂, CONH₂); 1 650 (C=O). 1 H NMR (CD₃SOCD₃): 8.00–7.10 m, 8 H (H-arom.); 6.80 s, 2 H (NH₂); 5.40 s, 1 H (CH-Ar); 4.40–4.00 br, 2 H (CONH₂); 2.30 s, 3 H (COCH₃). For C₂₀H₁₆N₄O₄S (408.4) calculated: 58.82% C, 3.95% H, 13.72% N, 7.85% S; found: 58.64% C, 3.91% H, 13.66% N, 7.53% S.

4-Acetyl-1-amino-2-phenyl-3-(4-nitrophenyl)-3H-pyrido[2,1-b][1,3]benzothiazole (VIi). Reaction time 3 h, yield 2.46 g (62%), m.p. 130 °C. IR spectrum: 3 480, 3 400 (NH₂), 1 703 (C=O). 1 H NMR (CD₃SOCD₃): 9.00–7.90 m, 13 H (H-arom.); 7.10 s, 2 H (NH₂); 5.40 s, 1 H (CH-Ar); 2.50 s, 3 H (COCH₃). For C₂₅H₂₀N₂OS (396.5) calculated: 75.73% C, 5.08% H, 7.07% N, 8.09% S; found: 75.35% C, 5.32% H, 7.41% N, 8.33% S.

REFERENCES

- El-Shafei A. K., El-Saghier A. M. M., Sultan A., Soliman A. M.: Phosphorus Sulphur Silicon 72, 73 (1992).
- El-Shafei A. K., Abdel-Ghany H. A., Sultan A., El-Saghier A. M. M.: Phosphorus Sulphur Silicon 73, 15 (1992).
- 3. El-Saghier A. M. M.: Bull. Chem. Soc. Jpn. 66, 2011 (1993).
- 4. El-Shafei A. K., El-Saghier A. M. M., Ahmed E. A.: Synthesis 1994, 152.
- 5. Sandstrom J., Wennarbeck I.: Acta Chem. Scand. 24, 1191 (1970).